Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review

نویسندگان

چکیده

For a large amount of spent lithium battery electrode materials (SLBEMs), direct recycling by traditional hydrometallurgy or pyrometallurgy technologies suffers from high cost and low efficiency even serious secondary pollution. Therefore, aiming to maximize the benefits both environmental protection e-waste resource recovery, applications SLBEM containing redox-active transition metals (e.g., Ni, Co, Mn, Fe) for catalytic decontamination before disposal has attracted extensive attention. More importantly, positive effects innate structural advantages (defects, oxygen vacancies, metal vacancies) in SLBEMs on have gradually been unveiled. This review summarizes pretreatment utilization methods achieve excellent performance SLBEMs, key factors (pH, reaction temperature, coexisting anions, catalyst dosage) affecting activity SLBEM, potential application outstanding characteristics (detection, reinforcement approaches, advantages) pollution treatment, possible mechanisms. In addition, this proposes problems practical future outlook, which can help provide broader reference researchers better promote implementation “treating waste waste” strategy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

The application of graphene in lithium ion battery electrode materials

Graphene is composed of a single atomic layer of carbon which has excellent mechanical, electrical and optical properties. It has the potential to be widely used in the fields of physics, chemistry, information, energy and device manufacturing. In this paper, we briefly review the concept, structure, properties, preparation methods of graphene and its application in lithium ion batteries. A con...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Vanadium-based nanostructure materials for secondary lithium battery applications.

Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2023

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal13010189